A special case of the data arrangement problem on binary trees

Rostislav Staněk^{*}

Eranda Çela**

JOACHIM SCHAUER^{*}

*Department of Statistics and Operations Research, University of Graz **Department of Optimization and Discrete Mathematics, Graz University of Technology

Rostislav Staněk

16th June 2015

Page 1/23

problem definition

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 の Q @

- problem definition
- upper bound

= 990

《曰》《聞》《臣》《臣》

- problem definition
- upper bound (solution algorithm)

ヘロン 人間 とくほと 人間 とう

- problem definition
- upper bound (solution algorithm)
- Iower bound

ヘロン 人間 とくほと 人間 とう

- problem definition
- upper bound (solution algorithm)
- Iower bound:
 - problem transformation

・ロト ・回ト ・ヨト ・ヨト

- problem definition
- upper bound (solution algorithm)
- Iower bound:
 - problem transformation
- recapitulation, future research and open questions

・ロト ・回ト ・ヨト ・ヨト

► Given

• an undirected graph G = (V(G), E(G)),

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Given

- ▶ an undirected graph G = (V(G), E(G)), ▶ an undirected graph T = (V(T), E(T)) with $|V(T)| \ge |V(G)|$ and

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Given
 - an undirected graph G = (V(G), E(G)),
 - ▶ an undirected graph T = (V(T), E(T)) with $|V(T)| \ge |V(G)|$ and
 - a subset $B \subseteq V(T)$ with $|B| \ge |V(G)|$,

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ○ ○ ○

- Given
 - an undirected graph G = (V(G), E(G)),
 - ▶ an undirected graph T = (V(T), E(T)) with $|V(T)| \ge |V(G)|$ and
 - a subset $B \subseteq V(T)$ with $|B| \ge |V(G)|$,

the generic graph embedding problem (GEP) consists of finding an injective embedding of the vertices of G into the vertices in B such that some prespecified objective function is minimised.

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の へ ⊙

Given

- an undirected graph G = (V(G), E(G)),
- ▶ an undirected graph T = (V(T), E(T)) with $|V(T)| \ge |V(G)|$ and
- a subset $B \subseteq V(T)$ with $|B| \ge |V(G)|$,

the generic graph embedding problem (GEP) consists of finding an injective embedding of the vertices of G into the vertices in B such that some prespecified objective function is minimised.

• A commonly used objective function maps an embedding $\phi: V(G) \rightarrow B$ to

$$\sum_{(i,j)\in E(G)}d(\phi(i),\phi(j)),$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ○ ○ ○

Given

- an undirected graph G = (V(G), E(G)),
- ▶ an undirected graph T = (V(T), E(T)) with $|V(T)| \ge |V(G)|$ and
- a subset $B \subseteq V(T)$ with $|B| \ge |V(G)|$,

the generic graph embedding problem (GEP) consists of finding an injective embedding of the vertices of G into the vertices in B such that some prespecified objective function is minimised.

• A commonly used objective function maps an embedding $\phi: V(G) \rightarrow B$ to

$$\sum_{i,j)\in E(G)} d(\phi(i),\phi(j)),\tag{1}$$

where d(x, y) denotes the length of the shortest path between x and y in T.

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の へ ⊙

 Different special cases of the GEP have been studied in the literature.

・ロト ・回ト ・ヨト ・ヨト

- Different special cases of the GEP have been studied in the literature:
 - The linear arrangement problem (LAP) is probably the most prominent one.

・ロト ・回ト ・ヨト ・ヨト

- Different special cases of the GEP have been studied in the literature:
 - The linear arrangement problem (LAP) is probably the most prominent one:
 - The problem is solvable in polynomial time for undirected trees [SHILOACH 1979¹, CHUNG 1984²].

¹Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, *SIAM Journal on Computing* **8** (1), 15–22, 1979.

²F. R. K. Chung, On optimal linear arrangements of trees, *Computers and Mathematics with Applications* **10** (1), 43–60, 1984.

(日)

- Different special cases of the GEP have been studied in the literature:
 - The linear arrangement problem (LAP) is probably the most prominent one:
 - The problem is solvable in polynomial time for undirected trees [SHILOACH 1979¹, CHUNG 1984²].
 - JUVAN and MOHAR use the eigenvalues in order to obtain a heuristic solution [JUVAN, MOHAR 1992³].

¹Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, *SIAM Journal on Computing* **8** (1), 15–22, 1979.

²F. R. K. Chung, On optimal linear arrangements of trees, *Computers and Mathematics with Applications* **10** (1), 43–60, 1984.

³M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discrete Applied Mathematics **36 (2)**, 153–168, 1992.

- Different special cases of the GEP have been studied in the literature:
 - The linear arrangement problem (LAP) is probably the most prominent one:
 - The problem is solvable in polynomial time for undirected trees [SHILOACH 1979¹, CHUNG 1984²].
 - JUVAN and MOHAR use the eigenvalues in order to obtain a heuristic solution [JUVAN, MOHAR 1992³].
- ▶ In our case *T* is a *d*-regular tree and *B* is the set of its leaves.

¹Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, *SIAM Journal on Computing* **8** (1), 15–22, 1979.

²F. R. K. Chung, On optimal linear arrangements of trees, *Computers and Mathematics with Applications* **10** (1), 43–60, 1984.

³M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discrete Applied Mathematics **36 (2)**, 153–168, 1992.

- Different special cases of the GEP have been studied in the literature:
 - The linear arrangement problem (LAP) is probably the most prominent one:
 - The problem is solvable in polynomial time for undirected trees [SHILOACH 1979¹, CHUNG 1984²].
 - JUVAN and MOHAR use the eigenvalues in order to obtain a heuristic solution [JUVAN, MOHAR 1992³].
- ▶ In our case *T* is a *d*-regular tree and *B* is the set of its leaves.
- We will call this problem data arrangement problem on regular trees (DAPT) and denote the objective value OV(G, d, φ).

¹Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, *SIAM Journal on Computing* **8** (1), 15–22, 1979.

²F. R. K. Chung, On optimal linear arrangements of trees, *Computers and Mathematics with Applications* **10** (1), 43–60, 1984.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 $OV(G,3,\phi) = 20$

◆□ → ◆□ → ◆ □ → ◆ □ →

General properties and our special case

▶ DAPT is \mathcal{NP} -hard for every fixed $d \ge 2$ [LUCZAK, NOBLE 2002⁴].

⁴M.J. Luzcak and S.D. Noble, Optimal arrangement of data in a tree directory, *Discrete Applied Mathematics* **121** (1-3), 307–315, 2002.

・ロットの聞く (聞く 不同・二郎)の

General properties and our special case

- ▶ DAPT is \mathcal{NP} -hard for every fixed $d \ge 2$ [LUCZAK, NOBLE 2002⁴].
- ÇELA and S. introduce some heuristics for this problem [ÇELA, S. 2013⁵].

⁴M.J. Luzcak and S.D. Noble, Optimal arrangement of data in a tree directory, *Discrete Applied Mathematics* **121 (1–3)**, 307–315, 2002.

⁵E. Çela and R. Staněk, Heuristics for the data arrangement problem on regular trees, *Journal of Combinatorial Optimization*, Oct. 2013, to appear, published online,

General properties and our special case

- ▶ DAPT is \mathcal{NP} -hard for every fixed $d \ge 2$ [LUCZAK, NOBLE 2002⁴].
- ▶ ÇELA and S. introduce some heuristics for this problem [ÇELA, S. 2013⁵].
- ▶ We deal with the special case where *G* and *T* are both binary regular trees.

⁴M.J. Luzcak and S.D. Noble, Optimal arrangement of data in a tree directory, *Discrete Applied Mathematics* **121 (1–3)**, 307–315, 2002.

⁵E. Çela and R. Staněk, Heuristics for the data arrangement problem on regular trees, *Journal of Combinatorial Optimization*, Oct. 2013, to appear, published online.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 $OV(G,2,\phi^*)=6$

▲ロト ▲圖ト ▲屋ト ▲屋ト

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

 $OV(G, 2, \phi^*) = 22$

◆□ > ◆□ > ◆臣 > ◆臣 >

・ロ・ ・ 日・ ・ 田・ ・ 田・

 $OV(G, 2, \phi^*) = 58$

< 日 > < 圖 > < 画 > < 画 > 、

 $OV(G, 2, \phi^*) = 58$

・ロン ・四 と ・ ヨ と ・ ヨ と

 $OV(G, 2, \phi^*) = 56$

< 日 > < 圖 > < 画 > < 画 > 、

- **Require:** binary regular tree G = (V, E) of height h_G labelled according to the canonical order
- **Ensure:** arrangement ϕ^*
 - 1: $b := 2^{h_G+1};$
 - 2: **if** $h_G = 0$ **then**
 - 3: $\phi^*(v_1) := b_1;$
 - 4: else $\{h_G > 0\}$
 - 5: solve the problem for the basic subtrees $\widehat{G_1}$ and $\widehat{G_2}$, place the obtained arrangements on the leaves $b_1, b_2, \ldots, b_{\frac{1}{2}b}$ and $b_{\frac{1}{2}b+1}, b_{\frac{1}{2}b+2}, \ldots, b_b$ and, finally, place the root on the leaf $b_{\frac{1}{2}b}$;
 - 6: **if** h_G is odd and $h_G \ge 3$ **then**
 - 7: make pair-exchange of the vertices arranged on the leaves $b_{\frac{1}{4}b-1}$ and $b_{\frac{1}{3}b}$;
 - 8: end if
 - 9: end if
- 10: return ϕ^* ;

Theorem

Given the binary regular trees G = (V, E) and T with heights h_G and $h = h_G + 1$, let G be the guest graph and T the host graph and let ϕ^* be the arrangement obtained from the described algorithm. Then

$$OV(G,2,\phi^*) = \begin{cases} 0 & \text{for } h_G = 0\\ \frac{29}{3} \cdot 2^{h_G} - 4h_G - 9 + \frac{1}{3}(-1)^{h_G} & \text{for } h_G \ge 1 \end{cases}$$
(2)

holds.

・ロト ・回ト ・ヨト ・ヨト

Lower bound – problem transformation

 $OV(G,2,\phi^*)=56$

Rostislav Staněk

< 日 > < 圖 > < 国 > < 国 > <

Lower bound – problem transformation

$$OV(G, 2, \phi^*) = 56$$

•
$$OV(G, 2, \phi) = 2(1 \cdot 4 + 3 \cdot 3 + 5 \cdot 2 + 5 \cdot 1) = 56$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

$$OV(G,2,\phi^*) = 56$$

• $OV(G, 2, \phi) = 2(1 \cdot 4 + 3 \cdot 3 + 5 \cdot 2 + 5 \cdot 1) = 56$ • $OV(G, 2, \phi) = 2(a_h(\phi) \cdot h + a_{h-1}(\phi) \cdot (h-1) + \ldots + a_1(\phi) \cdot 1)$

Rostislav Staněk

16th June 2015

Page 12/23

< □ > < @ > < 注 > < 注 > ... 注

$$OV(G,2,\phi^*) = 56$$

•
$$OV(G, 2, \phi) = 2 \sum_{i=1}^{h} a_i(\phi) \cdot i$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

$$OV(G,2,\phi^*) = 56$$

►
$$OV(G, 2, \phi) = 2\sum_{i=1}^{h} a_i(\phi) \cdot i$$

► $s_i(\phi) := \sum_{j=i}^{h} a_j(\phi)$ for all $1 \le i \le h$

・ロン ・四 と ・ ヨ と ・ ヨ と …

$$OV(G,2,\phi^*) = 56$$

$$\begin{array}{l} \bullet \quad OV(G,2,\phi) = 2\sum_{i=1}^{h} a_i(\phi) \cdot i \\ \bullet \quad s_i(\phi) := \sum_{j=i}^{h} a_j(\phi) \text{ for all } 1 \le i \le h \\ \bullet \quad a_i(\phi) = \begin{cases} s_i(\phi) - s_{i+1}(\phi) & \text{for } 1 \le i \le h-1 \\ s_i(\phi) & \text{for } i = h \end{cases} \end{array}$$

Rostislav Staněk

Page 12/23

ヘロン 人間 とくほど くほとう

$$OV(G,2,\phi^*) = 56$$

$$OV(G, 2, \phi) = 2 \sum_{i=1}^{h} a_i(\phi) \cdot i$$

$$s_i(\phi) := \sum_{j=i}^{h} a_j(\phi) \text{ for all } 1 \le i \le h$$

$$a_i(\phi) = \begin{cases} s_i(\phi) - s_{i+1}(\phi) & \text{for } 1 \le i \le h-1 \\ s_i(\phi) & \text{for } i = h \end{cases}$$

$$OV(G, 2, \phi) = 2 \sum_{i=1}^{h} s_i(\phi)$$

Rostislav Staněk

Page 12/23

・ロン ・四 と ・ ヨ と ・ ヨ と …

 $OV(G, 2, \phi^*) = 56$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$OV(G,2,\phi^*) = 56$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Given

• an undirected graph G = (V, E),

Given

- an undirected graph G = (V, E),
- a constant $k \geq 2$,

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Given

- an undirected graph G = (V, E),
- a constant $k \ge 2$,

the **k-balanced partitioning problem (kBPP)** asks for a partition of the vertex set V into k non-empty vertex sets

Given

- an undirected graph G = (V, E),
- ▶ a constant k ≥ 2,

the **k-balanced partitioning problem (kBPP)** asks for a partition of the vertex set V into k non-empty vertex sets

- $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, ..., $V_k \neq \emptyset$, where
- $\cup_{i=1}^{k} V_k = V$, $V_i \cap V_j = \emptyset$ for every $i \neq j$ and

•
$$|V_i| \leq \left\lceil \frac{n}{k} \right\rceil$$
 for all $1 \leq i \leq k$,

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ○ ○ ○

Given

- an undirected graph G = (V, E),
- ▶ a constant k ≥ 2,

the **k-balanced partitioning problem (kBPP)** asks for a partition of the vertex set V into k non-empty vertex sets

- $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, ..., $V_k \neq \emptyset$, where
- $\cup_{i=1}^{k} V_k = V$, $V_i \cap V_j = \emptyset$ for every $i \neq j$ and

•
$$|V_i| \leq \left\lceil \frac{n}{k} \right\rceil$$
 for all $1 \leq i \leq k$,

such that the number of edges connecting these vertex sets

$$c(G, \mathscr{V}) := \left| \{ (u, v) \in E | u \in V_i, v \in V_j, i \neq j \} \right|,$$
(3)

where $\mathscr{V} = \{V_i | 1 \le i \le k\}$, is minimised.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ○ ○ ○

・ロト ・回ト ・ヨト ・ヨト

▶ It is obvious that $s_i \ge c(G, \mathcal{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.

▶ It is obvious that $s_i \ge c(G, \mathscr{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.

・ロト ・四ト ・ヨト ・ヨト

▶ It is obvious that $s_i \ge c(G, \mathscr{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.

▶ It is obvious that $s_i \ge c(G, \mathscr{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.

▶ It is obvious that $s_i \ge c(G, \mathcal{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.

- ▶ It is obvious that $s_i \ge c(G, \mathcal{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.
- All but one components have the size $\frac{|V|+1}{k}$.

UNI

Lower bound – problem transformation

- ▶ It is obvious that $s_i \ge c(G, \mathcal{V})$, where $k = 2^{h-i+2}$ for all $2 \le i \le h$ and that $s_1 = |E(G)|$.
- All but one components have the size $\frac{|V|+1}{k}$.
- One component has the size $\frac{|V|+1}{k} 1$.

▶ kBPP is NP-hard (we get the minimum bisection problem which is NP-hard for k = 2 [GAREY, JOHNSON 2002⁶]).

⁶M.R. Garey and D.S. Johnson, *Computers and intractability: A guide to the theory of NP-completeness.* Series of books in the mathematical sciences, 1979.

- ▶ kBPP is NP-hard (we get the minimum bisection problem which is NP-hard for k = 2 [GAREY, JOHNSON 2002⁶]).
- ANDREEV and RÄCKE prove further complexity results for a generalization allowing near-balanced partitions [ANDREEV, RÄCKE 2006⁷].

⁶M.R. Garey and D.S. Johnson, *Computers and intractability: A guide to the theory of NP-completeness.* Series of books in the mathematical sciences, 1979.

⁷K. Andreev and H. Räcke, Balanced Graph Partitioning, *Theory of Computing Systems* **39 (6)**, 929–939, 2006.

- ▶ kBPP is NP-hard (we get the minimum bisection problem which is NP-hard for k = 2 [GAREY, JOHNSON 2002⁶]).
- ANDREEV and RÄCKE prove further complexity results for a generalization allowing near-balanced partitions [ANDREEV, RÄCKE 2006⁷].
- ▶ KRAUTHGAMER, NAOR and SCHWARTZ provide an approximation algorithm achieving an approximation of O(√log n log k) [KRAUTHGAMER, NAOR, SCHWARTZ 2009⁸].

⁶M.R. Garey and D.S. Johnson, *Computers and intractability: A guide to the theory of NP-completeness.* Series of books in the mathematical sciences, 1979.

⁷K. Andreev and H. Räcke, Balanced Graph Partitioning, *Theory of Computing Systems* **39 (6)**, 929–939, 2006.

⁸R. Krauthgamer, J. Naor and R. Schwartz, Partitioning graphs into balanced components, *Proceeding SODA '09 Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms*, 942–949, 2009.

▶ kBPP remains APX-hard even if the graph is an unweighted tree with constant maximum degree [FELDMANN, FOSCHINI 2013⁹].

⁹A.E. Feldmann and L. Foschini, Balanced Partitions of Trees and Applications, *Algorithmica* 2013, published online.

Rostislav Staněk

▶ kBPP remains APX-hard even if the graph is an unweighted tree with constant maximum degree [FELDMANN, FOSCHINI 2013⁹].

Theorem (SCHAUER and S.)

Let G = (V, E) be a binary regular tree of height $h \ge 1$ and let $k = 2^{k'}$, where $1 \le k' \le h$, and \mathscr{V}^* an optimal k-balanced partition. Then

$$c(G, \mathscr{V}^*) = \left(3 \cdot 2^{h+1} - 2^{k'+1}\right) \left(\frac{1}{2^s - 1} - \frac{1}{(1 - 2^{-s})2^{sl}}\right) +$$
(4)
$$3 \cdot 2^{h-sl+1} - 2,$$

where s = h - k' + 2 and $I = \lfloor \frac{h+1}{s} \rfloor$.

⁹A.E. Feldmann and L. Foschini, Balanced Partitions of Trees and Applications, *Algorithmica* 2013, published online.

	i	4	3	2	1
	a _i	1	3	5	5
	Si	1	4	9	14
	$c(G, \mathscr{V}^*)$	1	4	9	14

 \Rightarrow optimality in this case \checkmark

・ロト ・四ト ・ヨト ・ヨト

 \Rightarrow optimality in this case \checkmark

・ロト ・回ト ・ヨト ・ヨト

	i	5	4	3	2	1
	a _i	1	3	6	10	10
	Si	1	4	10	20	30
	$c(G, \mathscr{V}^*)$	1	4	10	20	30

$$\Rightarrow$$
 optimality in this case \checkmark

•	i	6	5	4	3	2	1
	a _i	1	3	6	12	19	21
	Si	1	4	10	22	41	62
	$c(G, \mathscr{V}^*)$	1	4	10	21	41	62

▶ In fact, the lower bound is tight for all $\lfloor \frac{h}{2} \rfloor + 1 \le i \le h$ and for i = 1 and i = 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• 278
$$\leq OV(G, 2, \phi^*) \leq 280$$

- ▶ In fact, the lower bound is tight for all $\lfloor \frac{h}{2} \rfloor + 1 \le i \le h$ and for i = 1 and i = 2.
- A straightforward analysis yields an approximation ratio 2.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ○ ○ ○

	i	6	5	4	3	2	1			
	ai	1	3	6	12	19	21	- → problom ¥		
	Si	1	4	10	22	41	62	\Rightarrow problem v		
	$c(G, \mathscr{V}^*)$	1	4	10	21	41	62			

•
$$278 \le OV(G, 2, \phi^*) \le 280$$

- ▶ In fact, the lower bound is tight for all $\lfloor \frac{h}{2} \rfloor + 1 \le i \le h$ and for i = 1 and i = 2.
- A straightforward analysis yields an approximation ratio 2.
- ► The empirical gap between the lower and the upper bound does not exceed 1.1.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

 $c(G,k,\mathscr{V})=10$

Page 19/23

イロン イヨン イヨン イヨン

 $c(G, k, \mathscr{V}) = 10 + 12 = 22$

ヘロン 人間 とくほど くほとう

 $c(G,k,\mathcal{V})=21$

ヘロン 人間 とくほど くほとう

▶ We cannot reach the lower bound in general (the solution yielded by our algorithm for $h_G = 5$ and h = 6 is optimal).

- ▶ We cannot reach the lower bound in general (the solution yielded by our algorithm for $h_G = 5$ and h = 6 is optimal).
- ► The presented algorithm does not yield an optimal solution for larger guest graphs (there exists a counterexample e.g. for h_G = 6 and h = 7).

- ▶ We cannot reach the lower bound in general (the solution yielded by our algorithm for $h_G = 5$ and h = 6 is optimal).
- ► The presented algorithm does not yield an optimal solution for larger guest graphs (there exists a counterexample e.g. for h_G = 6 and h = 7).
- It would be necessary to improve both the algorithm and the lower bound in order to reach the optimum.

Given

• an undirected graph G = (V, E),

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Given

- an undirected graph G = (V, E),
- a constant $k' \leq \lceil \log_2 n \rceil 1$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Given

- an undirected graph G = (V, E),
- ▶ a constant $k' \leq \lceil \log_2 n \rceil 1$,

a set $\mathcal{V} = \{\mathscr{V}^{(1)}, \mathscr{V}^{(2)}, \dots, \mathscr{V}^{(k')}\}$, where

 $\mathscr{V}^{(j)} = \{V_1^{(j)}, V_2^{(j)}, \dots, V_{2^j}^{(j)}\}$ for all $1 \le j \le k'$, is called a **hereditary family of power-two-cuts**, iff the following two properties are fulfilled:

Given

- an undirected graph G = (V, E),
- ▶ a constant $k' \leq \lceil \log_2 n \rceil 1$,

a set $\mathcal{V} = \{\mathscr{V}^{(1)}, \mathscr{V}^{(2)}, \dots, \mathscr{V}^{(k')}\}$, where

 $\mathscr{V}^{(j)} = \{V_1^{(j)}, V_2^{(j)}, \dots, V_{2^j}^{(j)}\}$ for all $1 \le j \le k'$, is called a **hereditary family of power-two-cuts**, iff the following two properties are fulfilled:

• $\mathscr{V}^{(j)}$ is a 2^j-balanced partition of G for all $1 \leq j \leq k'$.

Given

- an undirected graph G = (V, E),
- a constant $k' < \lceil \log_2 n \rceil 1$,

a set $\mathcal{V} = \{ \mathcal{V}^{(1)}, \mathcal{V}^{(2)}, \dots, \mathcal{V}^{(k')} \}$, where

 $\mathscr{V}^{(j)} = \{V_1^{(j)}, V_2^{(j)}, \dots, V_{2i}^{(j)}\}$ for all $1 \le j \le k'$, is called a hereditary family of power-two-cuts, iff the following two properties are fulfilled:

- 𝒴^(j) is a 2^j-balanced partition of G for all 1 ≤ j ≤ k'.
 For any 1 ≤ j ≤ k' − 1 and any 1 ≤ i ≤ 2^j, V_i^(j) is given as the union of 2 subsets among $V_1^{(j+1)}, V_2^{(j+1)}, \ldots, V_{2^{j+1}}^{(j+1)}$.

Given

- an undirected graph G = (V, E),
- a constant $k' < \lceil \log_2 n \rceil 1$,

a set $\mathcal{V} = \{ \mathcal{V}^{(1)}, \mathcal{V}^{(2)}, \dots, \mathcal{V}^{(k')} \}$, where

 $\mathscr{V}^{(j)} = \{V_1^{(j)}, V_2^{(j)}, \dots, V_{2i}^{(j)}\}$ for all $1 \le j \le k'$, is called a hereditary family of power-two-cuts, iff the following two properties are fulfilled:

- ▶ $\mathscr{V}^{(j)}$ is a 2^j-balanced partition of G for all $1 \le j \le k'$. ▶ For any $1 \le j \le k' 1$ and any $1 \le i \le 2^j$, $V_i^{(j)}$ is given as the union of 2 subsets among $V_1^{(j+1)}$, $V_2^{(j+1)}$, ..., $V_{2^{j+1}}^{(j+1)}$.
- The k-balanced partitioning problem into a hereditary family of power-two-cuts (kBPPH) asks for a hereditary family which minimises the objective value

Given

- an undirected graph G = (V, E),
- a constant $k' < \lceil \log_2 n \rceil 1$,

a set $\mathcal{V} = \{ \mathcal{V}^{(1)}, \mathcal{V}^{(2)}, \dots, \mathcal{V}^{(k')} \}$, where

 $\mathscr{V}^{(j)} = \{V_1^{(j)}, V_2^{(j)}, \dots, V_{2i}^{(j)}\}$ for all $1 \le j \le k'$, is called a hereditary family of power-two-cuts, iff the following two properties are fulfilled:

- ▶ $\mathscr{V}^{(j)}$ is a 2^j-balanced partition of G for all $1 \le j \le k'$. ▶ For any $1 \le j \le k' 1$ and any $1 \le i \le 2^j$, $V_i^{(j)}$ is given as the union of 2 subsets among $V_1^{(j+1)}$, $V_2^{(j+1)}$, ..., $V_{2^{j+1}}^{(j+1)}$.
- The k-balanced partitioning problem into a hereditary family of power-two-cuts (kBPPH) asks for a hereditary family which minimises the objective value

$$c^{H}(G,\mathcal{V}) = \sum_{j=1}^{k'} c(G,\mathscr{V}^{(j)}).$$
(5)

▶ kBPPH is NP-hard (we get the minimum bisection problem which is NP-hard for k' = 1 [GAREY, JOHNSON 2002¹⁰]).

¹⁰M.R. Garey and D.S. Johnson, *Computers and intractability: A guide to the theory* of *NP-completeness*. Series of books in the mathematical sciences, $1979_{2} \rightarrow 42 \rightarrow 22 \rightarrow 22$

- ▶ kBPPH is NP-hard (we get the minimum bisection problem which is NP-hard for k' = 1 [GAREY, JOHNSON 2002¹⁰]).
- The question about the computational complexity in our special case is open.

 10 M.R. Garey and D.S. Johnson, *Computers and intractability: A guide to the theory of NP-completeness.* Series of books in the mathematical sciences, 1979; $r \in \mathbb{R}$, $\mathfrak{g} \to \mathfrak{g}$

 We provide an approximation algorithm for one (very) special case of the DAPT.

・ロン ・四 と ・ ヨ と ・ ヨ と

- We provide an approximation algorithm for one (very) special case of the DAPT.
- Moreover, we know that neither the algorithm nor the lower bound can reach the optimum in general.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- We provide an approximation algorithm for one (very) special case of the DAPT.
- Moreover, we know that neither the algorithm nor the lower bound can reach the optimum in general.
- ▶ We would like either to improve the algorithm and the lower bound in order to obtain an exact solution algorithm or to prove that the problem is *NP*-hard.

(日)

- We provide an approximation algorithm for one (very) special case of the DAPT.
- Moreover, we know that neither the algorithm nor the lower bound can reach the optimum in general.
- ▶ We would like either to improve the algorithm and the lower bound in order to obtain an exact solution algorithm or to prove that the problem is *NP*-hard.
- We would like to generalize the algorithm (already done) and the lower bound (to do) for trees of any constant degree d ≥ 2.

・ロト ・回ト ・ヨト ・ヨト

- We provide an approximation algorithm for one (very) special case of the DAPT.
- Moreover, we know that neither the algorithm nor the lower bound can reach the optimum in general.
- ▶ We would like either to improve the algorithm and the lower bound in order to obtain an exact solution algorithm or to prove that the problem is *NP*-hard.
- ► We would like to generalize the algorithm (already done) and the lower bound (to do) for trees of any constant degree d ≥ 2.

Thank you for your attention!

ヘロト 人間 とくほ とくほ とう