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an injective embedding of the vertices of G into the vertices in B
such that some prespecified objective function is minimised.

» A commonly used objective function maps an embedding
¢: V(G) — B to

> d(e(), 6()), (1)

(i.))€E(G)

where d(x, y) denotes the length of the shortest path between x and
yin T.
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» Different special cases of the GEP have been studied in the
literature:
> The linear arrangement problem (LAP) is probably the most
prominent one:

> The problem is solvable in polynomial time for undirected trees
[SuiLoacH 1979, CHUNG 1984].

LY. Shiloach, A minimum linear arrangement algorithm for undirected trees, SIAM
Journal on Computing 8 (1), 15-22, 1979.

2F. R. K. Chung, On optimal linear arrangements of trees, Computers and
Mathematics with Applications 10 (1), 43-60, 1984.

Rostislav Stangk 16th June 2015 Page 4/23




RANZENS-UNVERSITE
NVERSITY OF

Algorithmic Graph Theory on the Adriatic Coast

Problem definition

» Different special cases of the GEP have been studied in the
literature:
> The linear arrangement problem (LAP) is probably the most
prominent one:
> The problem is solvable in polynomial time for undirected trees
[SuiLoacH 1979, CHUNG 1984].
> JUVAN and MOHAR use the eigenvalues in order to obtain a heuristic
solution [JUVAN, MoHAR 19923].

LY. Shiloach, A minimum linear arrangement algorithm for undirected trees, SIAM
Journal on Computing 8 (1), 15-22, 1979.

2F. R. K. Chung, On optimal linear arrangements of trees, Computers and
Mathematics with Applications 10 (1), 43-60, 1984.

3M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs,
Discrete Applied Mathematics 36 (2), 153-168, 1992.

Rostislav Stangk 16th June 2015 Page 4/23




RANZENS-UNVERSITE
NVERSITY OF

Algorithmic Graph Theory on the Adriatic Coast

Problem definition

» Different special cases of the GEP have been studied in the
literature:
> The linear arrangement problem (LAP) is probably the most
prominent one:
> The problem is solvable in polynomial time for undirected trees
[SuiLoacH 1979, CHUNG 1984].
> JUVAN and MOHAR use the eigenvalues in order to obtain a heuristic
solution [JUVAN, MoHAR 19923].

> In our case T is a d-regular tree and B is the set of its leaves.

LY. Shiloach, A minimum linear arrangement algorithm for undirected trees, SIAM
Journal on Computing 8 (1), 15-22, 1979.

2F. R. K. Chung, On optimal linear arrangements of trees, Computers and
Mathematics with Applications 10 (1), 43-60, 1984.

3M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs,
Discrete Applied Mathematics 36 (2), 153-168, 1992.

Rostislav Stangk 16th June 2015 Page 4/23




NZENS-UNVERSITAT Gf

Algorithmic Graph Theory on the Adriatic Coast

Problem definition

» Different special cases of the GEP have been studied in the
literature:
> The linear arrangement problem (LAP) is probably the most
prominent one:
> The problem is solvable in polynomial time for undirected trees
[SuiLoacH 1979, CHUNG 1984].
> JUVAN and MOHAR use the eigenvalues in order to obtain a heuristic
solution [JUVAN, MoHAR 19923].

> In our case T is a d-regular tree and B is the set of its leaves.

» We will call this problem data arrangement problem on regular
trees (DAPT) and denote the objective value OV(G, d, ¢).
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General properties and our special case

» DAPT is N'P-hard for every fixed d > 2 [Luczak, NOBLE 20024].

4M.J. Luzcak and S.D. Noble, Optimal arrangement of data in a tree directory,
Discrete Applied Mathematics 121 (1-3), 307-315, 2002.
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» DAPT is N'P-hard for every fixed d > 2 [Luczak, NOBLE 20024].

» CELA and S. introduce some heuristics for this problem
[CELA, S. 2013°].

> We deal with the special case where G and T are both binary
regular trees.
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Solution algorithm

Require: binary regular tree G = (V, E) of height h¢ labelled according
to the canonical order
Ensure: arrangement ¢*
1. b= 2hetl:

2: if hg =0 then

3 ¢"(v1) = by;

4: else {hg > 0}

5. solve the problem for the basic subtrees a and E;; place the
obtained arrangements on the leaves by, by, ..., b1, and by, 4,
bipis, ..., by and, finally, place the root on the leaf bip; ’

6. if hg is odd and hg > 3 then ’

7: make pair-exchange of the vertices arranged on the leaves b%b_1

and b%b;

8: endif

9: end if

10: return ¢*;
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Solution algorithm

Theorem

Given the binary regular trees G = (V,E) and T with heights hg and
h= hg +1, let G be the guest graph and T the host graph and let ¢* be
the arrangement obtained from the described algorithm. Then

«_ |0 for h¢ =0
OV(G,27¢ )— { % .2hc _4hG — 94+ %(_1)hc for hG > 1 (2)

holds.
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Lower bound — problem transformation
o
O/
P

cousesssenssenss

OV(G,2,¢*) = 56

2,¢)=2(1-4+3-3+5-2+45- 1)—56
:2,0) =2(an(¢) - h+an-1(¢) - (h—1) + ...+ a1(¢) - 1)
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OV(G,2, ") = 56
> OV(Ga 23 ¢) = 22,";1 ai(¢) 0
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Lower bound — problem transformation

O/O
/\3 % >O\>

cousesssenssenss

OV(G,2,¢*) = 56

OV(Ga 23 ¢) = 227:1 ai(¢) . I
si(¢) = ij-':,- aj(¢) forall1<i<h

| si(¢) —sia(¢) for1<i<h-—1
3i(9) = { si(9) - fori=h
OV(G,2,6) =231, si(¢)

v

v

v

v
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Lower bound — problem transformation

> Given
> an undirected graph G = (V, E),
> a constant k > 2,
the k-balanced partitioning problem (kBPP) asks for a partition
of the vertex set V into k non-empty vertex sets
> Vi#D, Vo#£0D, ..., Vi #0, where
» UK V=V, VinV, =0 for every i # j and
> Vi < {ﬂ forall1 <<k,
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Lower bound — problem transformation

> Given
> an undirected graph G = (V, E),
> a constant k > 2,
the k-balanced partitioning problem (kBPP) asks for a partition
of the vertex set V into k non-empty vertex sets
» Vi 0, Vo #£D, ..., Vi #0D, where
> U V= VVﬂV_Qforevery/;éjand
> \V|§{ -|foraI|1§/§k
such that the number of edges connecting these vertex sets

c(G,7) ‘{(u v) € Elue V;, vey,, (3)

where ¥ = {V;|1 < i < k}, is minimised.
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Lower bound — problem transformation

i |4 3 2 1
» a3, |1 3 5 5
s |1 4 9 14
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Lower bound — problem transformation

i |4 3 2 1
» a3, |1 3 5 5
s |1 4 9 14

> It is obvious that s; > ¢(G,7), where k = 202 forall 2 < i < h
and that s; = |E(G).
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Lower bound — problem transformation

i |4 3 2 1
» a3, |1 3 5 5
s |1 4 9 14
It is obvious that s; > ¢(G,¥), where k =2"=*2 forall 2 < i< h
and that s; = |E(G).

v

All but one components have the size

v

|V|+1
—

» One component has the size |VL+1 —1.
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Lower bound — problem transformation

» kBPP is N'P-hard (we get the minimum bisection problem which is
NP-hard for k =2 [GAREY, JOHNSON 20029]).

SM.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciences, 1979.
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» kBPP is N'P-hard (we get the minimum bisection problem which is
NP-hard for k =2 [GAREY, JOHNSON 20029]).

» ANDREEV and RACKE prove further complexity results for a
generalization allowing near-balanced partitions
[ANDREEV, RACKE 2006].

SM.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciences, 1979.

7K. Andreev and H. Ricke, Balanced Graph Partitioning, Theory of Computing
Systems 39 (6), 929-939, 2006.
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Lower bound — problem transformation

» kBPP is N'P-hard (we get the minimum bisection problem which is
NP-hard for k =2 [GAREY, JOHNSON 20029]).

» ANDREEV and RACKE prove further complexity results for a
generalization allowing near-balanced partitions
[ANDREEV, RACKE 2006].

» KRAUTHGAMER, NAOR and SCHWARTZ provide an approximation

algorithm achieving an approximation of O(y/log nlog k)
[KRAUTHGAMER, NAOR, SCHWARTZ 20098].

SM.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciences, 1979.

7K. Andreev and H. Ricke, Balanced Graph Partitioning, Theory of Computing
Systems 39 (6), 929-939, 2006.

8R. Krauthgamer, J. Naor and R. Schwartz, Partitioning graphs into balanced
components, Proceeding SODA '09 Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, 942-949, 2009.
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Lower bound — problem transformation

» kBPP remains APX-hard even if the graph is an unweighted tree
with constant maximum degree [FELDMANN, FOSCHINT 2013].

9A.E. Feldmann and L. Foschini, Balanced Partitions of Trees and Applications,
Algorithmica 2013, published online.
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Lower bound — problem transformation

» kBPP remains APX-hard even if the graph is an unweighted tree
with constant maximum degree [FELDMANN, FOSCHINT 2013].

Theorem (SCHAUER and S.)

Let G = (V, E) be a binary regular tree of height h > 1 and let k = 2,
where 1 < k' < h, and ¥* an optimal k-balanced partition. Then

(G, V") = (3 o+l _ 2k’+1) (251_ . 2175) 25/) + @)

3. 2h—s/+1 _ 27

wheres =h— k' +2 and | = | 2L ].

s

9A.E. Feldmann and L. Foschini, Balanced Partitions of Trees and Applications,
Algorithmica 2013, published online.
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Lower bound — problem transformation

i (4 3 2 1
L a 1 3 5 5
Si 1 4 9 14
c(G,¥v*)|1 4 9 14
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Lower bound — problem transformation

i ‘ 4 3 2 1
aj 1 3 5 5 S

> s 1 4 9 14 = optimality in this case v/
c(G,7*) |1 4 9 14

> OV(G,2,¢*) = 56
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Lower bound — problem transformation

i (4 3 2 1
, a 1 3 5 5
si 1 4 9 14
c(G,7*) |1 4 9 14
> OV(G,2,¢*) =56
i |5 4 3 2 1
L, ai 1 3 6 10 10
si 1 4 10 20 30
c(G,7*) |1 4 10 20 30

= optimality in this case v/
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Lower bound — problem transformation

i 4 3 2 1
aj 1 3 5 5 T .

> s; 1 4 9 14 = optimality in this case v/
c(G,7*) |1 4 9 14

» OV(G,2,¢*) =56
i |5 4 3 2 1
aj 1 3 6 10 10 C e .

> s; 1 4 10 20 30 = optimality in this case v/
c(G,¥*)y |1 4 10 20 30

» OV(G,2,¢*) =130
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Lower bound — problem transformation

i (6 5 4 3 2 1
LA 1 3 6 12 19 21
si 1 4 10 22 41 62
o(G,7*) |1 4 10 21 41 62
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Lower bound — problem transformation

i (6 5 4 3 2 1

LA L3 6 1210 21y
si 1 4 10 22 41 62
o(G,7*) |1 4 10 21 41 62

*

> 278 < OV(G,2,¢*) < 280
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Lower bound — problem transformation

i (6 5 4 3 2 1

LA L3 6 1210 21y
si 1 4 10 22 41 62
o(G,7*) |1 4 10 21 41 62

*

> 278 < OV(G,2,¢*) < 280

> In fact, the lower bound is tight for all |2] 4+ 1 < i < h and for
i=1andi=2.
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Lower bound — problem transformation

i (6 5 4 3 2 1

L 73 6 12 19 2 0
s; 1 4 10 22 41 e2  Provem
o(G,¥*) |1 4 10 21 41 62

> 278 < OV(G,2,¢*) < 280

v

In fact, the lower bound is tight for all [2| +1 </ < hand for
i=1andi=2.

A straightforward analysis yields an approximation ratio 2.

v
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Lower bound — problem transformation

i (6 5 4 3 2 1

, di 1 3 6 12 19 1:>obIeX
s; 1 4 10 22 41 e2  Provem
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> 278 < OV(G,2,¢*) <280

> In fact, the lower bound is tight for all |2] 4+ 1 < i < h and for

i=1land =2
> A straightforward analysis yields an approximation ratio 2.

v

The empirical gap between the lower and the upper bound does not
exceed 1.1.
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» We cannot reach the lower bound in general (the solution yielded by
our algorithm for hg =5 and h = 6 is optimal).
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Lower bound — problem transformation

» We cannot reach the lower bound in general (the solution yielded by
our algorithm for hg =5 and h = 6 is optimal).

» The presented algorithm does not yield an optimal solution for larger
guest graphs (there exists a counterexample e.g. for hg = 6 and
h=T1).

» It would be necessary to improve both the algorithm and the lower
bound in order to reach the optimum.
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> Given
> an undirected graph G = (V, E),
> a constant k' < [log, n] — 1,
aset V={7vW y@ 7/(/")}, where
0 = v VP VI forall 1< j < K, is called a
hereditary family of power-two-cuts, iff the following two
properties are fulfilled:
» ¥ is a 2/-balanced partition of G forall 1 < j < k'
» Forany1<j<k'—landany1<i<2, V.(j) is given as the union
of 2 subsets among VIUH), VQUH), cee V;ﬂl).
» The k-balanced partitioning problem into a hereditary family of
power-two-cuts (kBPPH) asks for a hereditary family which
minimises the objective value

i G,vW). (5)
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Lower bound — problem transformation

» kBPPH is N"P-hard (we get the minimum bisection problem which
is N'P-hard for k' = 1 [GAREY, JOHNSON 20029]).

10M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciencesy 1979.
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» kBPPH is N"P-hard (we get the minimum bisection problem which
is N'P-hard for k' = 1 [GAREY, JOHNSON 200219]).

» The question about the computational complexity in our special case
is open.

10M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciencesy 1979.
16th June 2015

Rostislav Stan&k Page 22/23




Algorithmic Graph Theory on the Adriatic Coast

Recapitulation, future research and open questions

» We provide an approximation algorithm for one (very) special case of
the DAPT.

Rostislav Stangk 16th June 2015 Page 23/23




Algorithmic Graph Theory on the Adriatic Coast

Recapitulation, future research and open questions

» We provide an approximation algorithm for one (very) special case of
the DAPT.

» Moreover, we know that neither the algorithm nor the lower bound
can reach the optimum in general.

Rostislav Stangk 16th June 2015 Page 23/23




Algorithmic Graph Theory on the Adriatic Coast

Recapitulation, future research and open questions

» We provide an approximation algorithm for one (very) special case of
the DAPT.

» Moreover, we know that neither the algorithm nor the lower bound
can reach the optimum in general.

» We would like either to improve the algorithm and the lower bound
in order to obtain an exact solution algorithm or to prove that the
problem is N'P-hard.

Rostislav Stangk 16th June 2015 Page 23/23




Algorithmic Graph Theory on the Adriatic Coast

Recapitulation, future research and open questions

» We provide an approximation algorithm for one (very) special case of
the DAPT.

» Moreover, we know that neither the algorithm nor the lower bound
can reach the optimum in general.

» We would like either to improve the algorithm and the lower bound
in order to obtain an exact solution algorithm or to prove that the
problem is N'P-hard.

» We would like to generalize the algorithm (already done) and the
lower bound (to do) for trees of any constant degree d > 2.

Rostislav Stangk 16th June 2015 Page 23/23




Algorithmic Graph Theory on the Adriatic Coast

Recapitulation, future research and open questions

» We provide an approximation algorithm for one (very) special case of
the DAPT.

» Moreover, we know that neither the algorithm nor the lower bound
can reach the optimum in general.

» We would like either to improve the algorithm and the lower bound
in order to obtain an exact solution algorithm or to prove that the
problem is N'P-hard.

» We would like to generalize the algorithm (already done) and the
lower bound (to do) for trees of any constant degree d > 2.

Thank you for your attention!
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