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Rostislav Staněk 16th June 2015 Page 2/23



Algorithmic Graph Theory on the Adriatic Coast

Short overview

I problem definition

I upper bound

(solution algorithm)

I lower bound:
I problem transformation

I recapitulation, future research and open questions
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Algorithmic Graph Theory on the Adriatic Coast

Problem definition

I Given
I an undirected graph G =

(
V (G),E(G)

)
,

I an undirected graph T =
(
V (T ),E(T )

)
with |V (T )| ≥ |V (G)| and

I a subset B ⊆ V (T ) with |B| ≥
∣∣V (G)

∣∣,
the generic graph embedding problem (GEP) consists of finding
an injective embedding of the vertices of G into the vertices in B
such that some prespecified objective function is minimised.

I A commonly used objective function maps an embedding
φ : V (G )→ B to ∑

(i,j)∈E(G)

d
(
φ(i), φ(j)

)
, (1)

where d(x , y) denotes the length of the shortest path between x and
y in T .
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Algorithmic Graph Theory on the Adriatic Coast

Problem definition

I Different special cases of the GEP have been studied in the
literature.

I The linear arrangement problem (LAP) is probably the most
prominent one

I The problem is solvable in polynomial time for undirected trees
[Shiloach 19791, Chung 19842].

I Juvan and Mohar use the eigenvalues in order to obtain a heuristic
solution [Juvan, Mohar 19923].

I In our case T is a d-regular tree and B is the set of its leaves.

I We will call this problem data arrangement problem on regular
trees (DAPT) and denote the objective value OV (G , d , φ).

1Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, SIAM
Journal on Computing 8 (1), 15–22, 1979.

2F. R. K. Chung, On optimal linear arrangements of trees, Computers and
Mathematics with Applications 10 (1), 43–60, 1984.

3M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs,
Discrete Applied Mathematics 36 (2), 153–168, 1992.
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Algorithmic Graph Theory on the Adriatic Coast

Problem definition

1

2

3 4

5

5 4 1 3 2

OV (G , 3, φ) = 20
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Algorithmic Graph Theory on the Adriatic Coast

General properties and our special case

I DAPT is NP-hard for every fixed d ≥ 2 [Luczak, Noble 20024].

I Çela and S. introduce some heuristics for this problem
[Çela, S. 20135].

I We deal with the special case where G and T are both binary
regular trees.

4M.J. Luzcak and S.D. Noble, Optimal arrangement of data in a tree directory,
Discrete Applied Mathematics 121 (1–3), 307–315, 2002.

3E. Çela and R Staněk, Heuristics for the data arrangement problem on regular
trees, Journal of Combinatorial Optimization, Oct. 2013, to appear, published online.
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I Çela and S. introduce some heuristics for this problem
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Algorithmic Graph Theory on the Adriatic Coast

Solution algorithm

1

2 3

2 1 3

OV (G , 2, φ∗) = 6
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Algorithmic Graph Theory on the Adriatic Coast

Solution algorithm

1

2 3

4 5 6 7

4 2 5 1 6 3 7

OV (G , 2, φ∗) = 22
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Algorithmic Graph Theory on the Adriatic Coast

Solution algorithm

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

OV (G , 2, φ∗) = 58
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Solution algorithm

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

8 4 1 2 10 5 11 9 12 6 13 3 14 7 15

OV (G , 2, φ∗) = 56
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Algorithmic Graph Theory on the Adriatic Coast

Solution algorithm

Require: binary regular tree G = (V ,E ) of height hG labelled according
to the canonical order

Ensure: arrangement φ∗

1: b ..= 2hG +1;
2: if hG = 0 then
3: φ∗(v1) ..= b1;
4: else {hG > 0}
5: solve the problem for the basic subtrees Ĝ1 and Ĝ2, place the

obtained arrangements on the leaves b1, b2, . . . , b 1
2 b

and b 1
2 b+1,

b 1
2 b+2, . . . , bb and, finally, place the root on the leaf b 1

2 b
;

6: if hG is odd and hG ≥ 3 then
7: make pair-exchange of the vertices arranged on the leaves b 1

4 b−1

and b 1
2 b

;
8: end if
9: end if

10: return φ∗;
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Algorithmic Graph Theory on the Adriatic Coast

Solution algorithm

Theorem
Given the binary regular trees G = (V ,E ) and T with heights hG and
h = hG + 1, let G be the guest graph and T the host graph and let φ∗ be
the arrangement obtained from the described algorithm. Then

OV (G , 2, φ∗) =

{
0 for hG = 0
29
3 · 2

hG − 4hG − 9 + 1
3 (−1)hG for hG ≥ 1

(2)

holds.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

8 4 1 2 10 5 11 9 12 6 13 3 14 7 15

OV (G , 2, φ∗) = 56
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I OV (G , 2, φ) = 2(1 · 4 + 3 · 3 + 5 · 2 + 5 · 1) = 56
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Lower bound – problem transformation

8 4 1 2 10 5 11 9 12 6 13 3 14 7 15

OV (G , 2, φ∗) = 56

I OV (G , 2, φ) = 2(1 · 4 + 3 · 3 + 5 · 2 + 5 · 1) = 56
I OV (G , 2, φ) = 2

(
ah(φ) · h + ah−1(φ) · (h − 1) + . . .+ a1(φ) · 1

)
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Lower bound – problem transformation
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OV (G , 2, φ∗) = 56

I OV (G , 2, φ) = 2
∑h

i=1 ai (φ) · i
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Lower bound – problem transformation

8 4 1 2 10 5 11 9 12 6 13 3 14 7 15

OV (G , 2, φ∗) = 56

I

i 4 3 2 1
ai 1 3 5 5
si 1 4 9 14

I OV (G , 2, φ) = 2(1 + 4 + 9 + 14) = 56
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I Given
I an undirected graph G = (V ,E),

I a constant k ≥ 2,

the k-balanced partitioning problem (kBPP) asks for a partition
of the vertex set V into k non-empty vertex sets

I V1 6= ∅, V2 6= ∅, . . . , Vk 6= ∅, where
I ∪k

i=1Vk = V , Vi ∩ Vj = ∅ for every i 6= j and
I |Vi | ≤

⌈
n
k

⌉
for all 1 ≤ i ≤ k,

such that the number of edges connecting these vertex sets

c(G ,V ) ..=
∣∣∣{(u, v) ∈ E |u ∈ Vi , v ∈ Vj , i 6= j

}∣∣∣, (3)

where V = {Vi |1 ≤ i ≤ k}, is minimised.
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Rostislav Staněk 16th June 2015 Page 13/23



Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I Given
I an undirected graph G = (V ,E),
I a constant k ≥ 2,

the k-balanced partitioning problem (kBPP) asks for a partition
of the vertex set V into k non-empty vertex sets

I V1 6= ∅, V2 6= ∅, . . . , Vk 6= ∅, where
I ∪k

i=1Vk = V , Vi ∩ Vj = ∅ for every i 6= j and
I |Vi | ≤

⌈
n
k

⌉
for all 1 ≤ i ≤ k,

such that the number of edges connecting these vertex sets

c(G ,V ) ..=
∣∣∣{(u, v) ∈ E |u ∈ Vi , v ∈ Vj , i 6= j

}∣∣∣, (3)

where V = {Vi |1 ≤ i ≤ k}, is minimised.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I

i 4 3 2 1
ai 1 3 5 5
si 1 4 9 14

I It is obvious that si ≥ c(G ,V ), where k = 2h−i+2 for all 2 ≤ i ≤ h
and that s1 =

∣∣E (G )
∣∣.

I All but one components have the size |V |+1
k .

I One component has the size |V |+1
k − 1.

Rostislav Staněk 16th June 2015 Page 14/23



Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I

i 4 3 2 1
ai 1 3 5 5
si 1 4 9 14

I It is obvious that si ≥ c(G ,V ), where k = 2h−i+2 for all 2 ≤ i ≤ h
and that s1 =

∣∣E (G )
∣∣.

I All but one components have the size |V |+1
k .

I One component has the size |V |+1
k − 1.

Rostislav Staněk 16th June 2015 Page 14/23



Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I

i 4 3 2 1
ai 1 3 5 5
si 1 4 9 14

, k = 23−4+2 = 2

I It is obvious that si ≥ c(G ,V ), where k = 2h−i+2 for all 2 ≤ i ≤ h
and that s1 =

∣∣E (G )
∣∣.

I All but one components have the size |V |+1
k .

I One component has the size |V |+1
k − 1.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I kBPP is NP-hard (we get the minimum bisection problem which is
NP-hard for k = 2 [Garey, Johnson 20026]).

I Andreev and Räcke prove further complexity results for a
generalization allowing near-balanced partitions
[Andreev, Räcke 20067].

I Krauthgamer, Naor and Schwartz provide an approximation
algorithm achieving an approximation of O(

√
log n log k)

[Krauthgamer, Naor, Schwartz 20098].

6M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciences, 1979.

7K. Andreev and H. Räcke, Balanced Graph Partitioning, Theory of Computing
Systems 39 (6), 929–939, 2006.

8R. Krauthgamer, J. Naor and R. Schwartz, Partitioning graphs into balanced
components, Proceeding SODA ’09 Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, 942–949, 2009.
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[Andreev, Räcke 20067].

I Krauthgamer, Naor and Schwartz provide an approximation
algorithm achieving an approximation of O(

√
log n log k)

[Krauthgamer, Naor, Schwartz 20098].

6M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciences, 1979.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I kBPP remains APX -hard even if the graph is an unweighted tree
with constant maximum degree [Feldmann, Foschini 20139].

Theorem (Schauer and S.)
Let G = (V ,E ) be a binary regular tree of height h ≥ 1 and let k = 2k′

,
where 1 ≤ k ′ ≤ h, and V ∗ an optimal k-balanced partition. Then

c(G ,V ∗) =
(

3 · 2h+1 − 2k′+1
)( 1

2s − 1
− 1

(1− 2−s) 2sl

)
+

3 · 2h−sl+1 − 2,

(4)

where s = h − k ′ + 2 and l =
⌊
h+1
s

⌋
.

9A.E. Feldmann and L. Foschini, Balanced Partitions of Trees and Applications,
Algorithmica 2013, published online.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I

i 4 3 2 1

⇒ optimality in this case 3
ai 1 3 5 5
si 1 4 9 14
c(G ,V ∗) 1 4 9 14

I OV (G , 2, φ∗) = 56

I

i 5 4 3 2 1

⇒ optimality in this case 3
ai 1 3 6 10 10
si 1 4 10 20 30
c(G ,V ∗) 1 4 10 20 30

I OV (G , 2, φ∗) = 130
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I

i 6 5 4 3 2 1

⇒ problem 7
ai 1 3 6 12 19 21
si 1 4 10 22 41 62
c(G ,V ∗) 1 4 10 21 41 62

I 278 ≤ OV (G , 2, φ∗) ≤ 280

I In fact, the lower bound is tight for all
⌊
h
2

⌋
+ 1 ≤ i ≤ h and for

i = 1 and i = 2.

I A straightforward analysis yields an approximation ratio 2.

I The empirical gap between the lower and the upper bound does not
exceed 1.1.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

c(G , k ,V ) = c(G , k ,V ) =
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Lower bound – problem transformation

c(G , k ,V ) = 10 + 12 = 22
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Lower bound – problem transformation

c(G , k ,V ) = 21
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I We cannot reach the lower bound in general (the solution yielded by
our algorithm for hG = 5 and h = 6 is optimal).

I The presented algorithm does not yield an optimal solution for larger
guest graphs (there exists a counterexample e.g. for hG = 6 and
h = 7).

I It would be necessary to improve both the algorithm and the lower
bound in order to reach the optimum.
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation
I Given

I an undirected graph G = (V ,E),

I a constant k ′ ≤ dlog2 ne − 1,

a set V = {V (1),V (2), . . . ,V (k′)}, where

V (j) = {V (j)
1 ,V

(j)
2 , . . . ,V

(j)
2j } for all 1 ≤ j ≤ k ′, is called a

hereditary family of power-two-cuts, iff the following two
properties are fulfilled:

I V (j) is a 2j -balanced partition of G for all 1 ≤ j ≤ k ′.
I For any 1 ≤ j ≤ k ′ − 1 and any 1 ≤ i ≤ 2j , V

(j)
i is given as the union

of 2 subsets among V
(j+1)
1 , V

(j+1)
2 , . . . , V

(j+1)

2j+1 .

I The k-balanced partitioning problem into a hereditary family of
power-two-cuts (kBPPH) asks for a hereditary family which
minimises the objective value

cH(G ,V) =
k′∑
j=1

c(G ,V (j)). (5)
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Rostislav Staněk 16th June 2015 Page 21/23



Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation
I Given

I an undirected graph G = (V ,E),
I a constant k ′ ≤ dlog2 ne − 1,

a set V = {V (1),V (2), . . . ,V (k′)}, where

V (j) = {V (j)
1 ,V

(j)
2 , . . . ,V

(j)
2j } for all 1 ≤ j ≤ k ′, is called a

hereditary family of power-two-cuts, iff the following two
properties are fulfilled:

I V (j) is a 2j -balanced partition of G for all 1 ≤ j ≤ k ′.
I For any 1 ≤ j ≤ k ′ − 1 and any 1 ≤ i ≤ 2j , V

(j)
i is given as the union

of 2 subsets among V
(j+1)
1 , V

(j+1)
2 , . . . , V

(j+1)

2j+1 .

I The k-balanced partitioning problem into a hereditary family of
power-two-cuts (kBPPH) asks for a hereditary family which
minimises the objective value

cH(G ,V) =
k′∑
j=1

c(G ,V (j)). (5)
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Algorithmic Graph Theory on the Adriatic Coast

Lower bound – problem transformation

I kBPPH is NP-hard (we get the minimum bisection problem which
is NP-hard for k ′ = 1 [Garey, Johnson 200210]).

I The question about the computational complexity in our special case
is open.

10M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness. Series of books in the mathematical sciences, 1979.
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Algorithmic Graph Theory on the Adriatic Coast

Recapitulation, future research and open questions

I We provide an approximation algorithm for one (very) special case of
the DAPT.

I Moreover, we know that neither the algorithm nor the lower bound
can reach the optimum in general.

I We would like either to improve the algorithm and the lower bound
in order to obtain an exact solution algorithm or to prove that the
problem is NP-hard.

I We would like to generalize the algorithm (already done) and the
lower bound (to do) for trees of any constant degree d ≥ 2.

Thank you for your attention!
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